Znajdź odpowiedź na Twoje pytanie o jak sie sprowadzało do wspólnego mianownika prosz pomocy. magda332398 magda332398 15.09.2014 Matematyka
Ten materiał posiada napisy w języku ukraińskim Playlista Dodawanie ułamków zwykłych o różnych mianownikach 11:01 Odejmowanie ułamków o różnych mianownikach 05:30 Dodawanie liczb mieszanych o różnych mianownikach w części ułamkowej 09:12 Odejmowanie liczb mieszanych o różnych mianownikach w części ułamkowej 06:02 Porównywanie różnicowe ułamków zwykłych 05:31 Ten materiał posiada napisy w języku ukraińskim Z tego filmu dowiesz się: co zrobić, gdy musisz odjąć ułamki o różnych mianownikach, jak znaleźć wspólny mianownik dla dwóch ułamków, jakie są zasady odejmowania ułamków o różnych mianownikach. Podstawa programowa Autorzy i materiały Wiedza niezbędna do zrozumienia tematu Aby w pełni zrozumieć materiał zawarty w tej playliście, upewnij się, że masz opanowane poniższe zagadnienia. Udostępnianie w zewnętrznych narzędziach Korzystając z poniższych funkcjonalności możesz dodać ten zasób do swoich narzędzi. Transkrypcja Kliknij na zdanie, aby przewinąć wideo do tego miejsca. Odejmowanie ułamków o różnych mianownikach rządzi się tymi samymi prawami, co dodawanie ułamków o różnych mianownikach. Za chwilę się o tym przekonasz. Widzisz pizzę, która przed zjedzeniem jednego kawałka była podzielona na 8 jednakowych części. Skoro zjedzono jeden kawałek, to zostało 7 kawałków. Jaka to część pizzy? Siedem ósmych. Wyobraź sobie teraz, że połowę pizzy chcesz zabrać do domu. Połowa pizzy to jedna druga. Aby obliczyć, jaka część pizzy zostanie do zjedzenia, wystarczy od ułamka 7/8 odjąć ułamek 1/2. Zwróć jednak uwagę, że oba ułamki mają różne mianowniki. Potrafisz odejmować już ułamki o jednakowych mianownikach. Co więc możemy zrobić? Możemy zapisać ułamek 1/2 w postaci ułamka o mianowniku 8. Popatrz na tę pizzę. Ta linia dzieli ją na dwie połowy. Połowa z ośmiu kawałków to 4 części. Jedna druga to inaczej cztery ósme. Aby rozszerzyć ułamek 1/2 do ułamka 4/8 należy licznik i mianownik pomnożyć przez 4. Jeden razy cztery to cztery. Dwa razy cztery to osiem. W tym odejmowaniu ułamek 1/2 możemy zastąpić ułamkiem 4/8. Co otrzymamy? 7/8 odjąć 4/8. Gdy odejmujemy dwa ułamki o takich samych mianownikach, to odejmujemy od siebie liczniki, a mianownik przepisujemy bez zmian. Siedem odjąć cztery to trzy. Otrzymamy trzy ósme. Do zjedzenia zostanie 3/8 pizzy. Spójrz w teraz na taki przykład. Tutaj mamy dwie trzecie odjąć jedna czwarta. Te ułamki również mają różne mianowniki. Aby je od siebie odjąć, należy sprowadzić je do wspólnego mianownika. Taka liczba będzie dzieliła się zarówno przez 3 jak i przez 4. Wypiszmy najpierw wielokrotności liczby 3. Są to liczby: 0, 3, 6, 9, 12 i tak dalej... Tyle nam wystarczy. Wypiszmy teraz wielokrotności liczby 4. Są to liczby 0, 4, 8 i 12. Oczywiście liczba 4 ma więcej wielokrotności, ale tyle też nam wystarczy. Widzimy, że wspólną wielokrotnością obu liczb jest liczba 12. Mam teraz dla ciebie zadanie: zatrzymaj lekcję i spróbuj samodzielnie rozszerzyć oba ułamki do ułamka o mianowniku 12. Aby rozszerzyć ułamek 2/3 do ułamka o mianowniku 12, wystarczy licznik i mianownik pomnożyć przez 4. Otrzymamy 8/12. Aby rozszerzyć ułamek 1/4 do ułamka o mianowniku 12, wystarczy licznik i mianownik pomnożyć przez 3. Otrzymamy 3/12. Odejmijmy od siebie te ułamki. Co otrzymamy? Osiem dwunastych odjąć trzy dwunaste to 5/12. Znowu mam zadanie dla ciebie. Zatrzymaj lekcję i spróbuj samodzielnie wykonać to odejmowanie. Znowu mamy tutaj ułamki o różnych mianownikach. Aby wykonać to odejmowanie musimy sprowadzić te dwa ułamki do wspólnego mianownika. Spróbujmy to zrobić bez wypisywania wielokrotności obu mianowników. Która liczba jest większa? 12. Liczba 12 nie dzieli się przez 8, czyli tego ułamka nie możemy zapisać w postaci ułamka o mianowniku 12. Jaka jest kolejna wielokrotność liczby 12? Dwadzieścia cztery. Czy 24 dzieli się przez 8? Tak. Wspólnym mianownikiem obu ułamków będzie więc liczba 24. Aby rozszerzyć ułamek 7/8 do ułamka o mianowniku 24, należy licznik i mianownik pomnożyć przez 3. Otrzymamy 21/24. Aby rozszerzyć ułamek 1/12 do ułamka o mianowniku 24, należy licznik i mianownik pomnożyć przez 2. Otrzymamy 2/24. Teraz możemy odjąć od siebie te dwa ułamki. Skoro mają takie same mianowniki, to odejmujemy od siebie liczniki, a mianownik przepisujemy bez zmian. 21 odjąć 2 to 19. Otrzymamy 19/24. Pamiętaj, aby na końcu sprawdzić, czy wynik da się zapisać w postaci liczby mieszanej, albo czy da się go skrócić. Ułamka 19/24 nie da się zapisać w postaci liczby mieszanej, ani go skrócić. To jest nasz wynik. Aby odjąć ułamki o różnych mianownikach, trzeba najpierw sprowadzić je do wspólnego mianownika, a następnie odjąć liczniki, a mianownik przepisać bez zmian. Pamiętaj, aby wynik zapisać w postaci ułamka nieskracalnego lub liczby mieszanej. Dzięki tej playliście nauczysz się dodawania i odejmowania ułamków o różnych mianownikach. Wszystkie playlisty znajdziesz na naszej stronie internetowej, Ćwiczenia Interaktywne ćwiczenia związane z tą wideolekcją. Materiały dodatkowe Inne zasoby do wykorzystania podczas zajęć z tego tematu. Lista wszystkich autorów Lektor: Krzysztof Chojecki Konsultacja: Małgorzata Rabenda Grafika podsumowania: Valeriia Malyk Materiały: Valeriia Malyk, Krzysztof Chojecki, Joanna Zalewska Kontrola jakości: Małgorzata Załoga Produkcja Znajdź odpowiedź na Twoje pytanie o HEJ JAK NP MAMY ŻE 7/6 ODJĄĆ LUB PLUS 3/9JAK SPROWADZIĆ TO DO WSPÓLNEGO MIANOWNIKA A JAK NP 2CAŁE 2/3 ODJĄĆ 10/9 JAK TO SPR… Dzień: Dodawanie ułamków o różnych VCele ogólne: Uczeń:-Potrafi dodawać ułamki o jednakowych mianownikach;-Wie jak sprowadzić dane ułamki do wspólnego mianownika;-Umie zamienić liczbę mieszaną na ułamek niewłaściwy;-Potrafi wyciągnąć wnioski na podstawie wykonanych przykładów;-Wie, jak dodać ułamki o różnych mianownikach;-Potrafi pracować indywidualnie i w Indywidualna;- Grupowa;- Słowna;- Problemowa; Środki dydaktyczne:- Karty pracy z zadaniami;- zajęć: porządkowe:- Sprawdzenie obecności; - Omówienie i poprawa zadania domowego;- Podanie tematu i celu Dodawanie ułamków o jednakowych mianownikach- ćwiczenia- Rozwiązanie kilku działań na Sprowadzanie ułamków do wspólnego mianownika- ćwiczenia- Wykonanie kilku przykładów na Dodawanie ułamków o różnych mianownikach:- Nauczyciel daje dwóm uczniom po jednym jabłku i prosi, by każdy z nich podzielił swoje jabłko na podane części- pierwszy uczeń ma podzielić owoc na 4 równe części a drugi- na dwie. Następnie kolejny uczeń podchodzi do kolegów i zabiera podane części jabłek- od pierwszego ucznia 3/4 a od drugiego - 1/2 jabłka. - Próba odpowiedzi na pytania: „Jaką część jabłek ma w sumie teraz kolega?” , „Jakie „kroki” należy uczynić, aby dodać ułamki o różnych mianownikach?”- Po rozwiązaniu problemu nauczyciel rozpisuje kilka przykładów na tablicy;- Wspólne sformułowanie i zapisanie reguły : Aby dodać ułamki o różnych mianownikach, musimy najpierw sprowadzić je do wspólnego mianownika. Gdy w wyniku powstanie ułamek niewłaściwy, to należy wyciągnąć z niego Dodawanie liczb mieszanych – nauczyciel dokłada do pierwszej części jeszcze dwa całe jabłka, a do drugiej jedno całe jabłko - zwrócenie szczególnej uwagi na fakt, iż przy dodawaniu liczb mieszanych tylko ułamek sprowadzamy do wspólnego mianownika ( 2 3/4 + 1 1/2)5. Ćwiczenia- Uczniowie rozwiązują zadania na tablicy. 6. Ćwiczenia w grupach:- Uczniowie zostają podzieleni na 4 grupy, każda grupa dostaje po 2 zadania. Rozwiązują je wspólnie wewnątrz grup, a potem na forum klasy każda z grup przedstawia swoje rozwiązania. 7. Podsumowanie zdobytych Pożegnanie uczniów.

PK (podkreślam to, bo też zawsze z boku mam wykres kasowego rynku, bez PK i z lekko innym spojrzeniem żeby zawsze sprowadzić dany ruch lub wizję do wspólnego mianownika) i nie widzę nic. Zmienność opadła jak tylko się da i chociaż początkowo DAX wykonał ruch z boxa w górę, to ledwie na 44 pkt i wraca.

Pewną trudnością w wykonywaniu działań na ułamkach jest sprowadzenie ich do wspólnego mianownika. Aby sprowadzić ułamki do wspólnego mianownika, należy znaleźć, dowolną metodą, wspólną wielokrotność mianowników tych ułamków. Najlepiej jeśli będzie to najmniejsza wspólna wielokrotność, znacznie ułatwione są wtedy dalsze rachunki. Sprowadzenie ułamków do wspólnego mianownika przydatne jest często podczas dodawania i odejmowania ułamków, czy też porównywania ułamków. Przykład Sprowadźmy do wspólnego mianownika ułamki $\frac{5}{12}$ i $\frac{4}{9}$. Najlepszy mianownik to najmniejszy mianownik. Szukamy więc najmniejszej wspólnej wielokrotności liczb $12$ i $9$. Można to zrobić wypisując po prostu kolejne wielokrotności tych liczb: $W_{12} = \{12, 24, 36, 48\}$ $W_9 = \{9, 18, 27, 36\}$ Najmniejszą wspólną wielokrotnością liczb $12$ i $9$ jest liczba $36$, czyli naszym wspólnym mianownikiem będzie właśnie $36$. Teraz należy rozszerzyć dwa ułamki tak, aby ich mianownikiem była liczba $36$. Należy pamiętać, że rozszerzanie ułamków nie zmienia ich wartości. Ułamek $\frac{5}{12}$ rozszerzamy przez $3$, a ułamek $\frac{4}{9}$ rozszerzamy przez $4$. Dlaczego odpowiednio przez $3$ i przez $4$? Dlatego, bo $36 \div 12 = 3$ i $36 \div 9 = 4$. W wyniku rozszerzania otrzymujemy dwa ułamki o mianowniku $36$, mianowicie $\frac{15}{36}$ i $\frac{16}{36}$, które są równoważne wyjściowym ułamkom. Dla niedużych wartości dwóch liczb, szukanie ich najmniejszej wspólnej wielokrotności nie jest zadaniem trudnym. W przypadku liczb większych, znajdowanie takiej wielokrotności metodą podaną wyżej, może być już czasochłonne. Dla większych liczb należy skorzystać z innego sposobu szukania nww, można wykorzystać algorytm z rozkładem liczb na czynniki pierwsze. Jest też sposób bardzo prosty, ale nie zawsze najlepszy. Wspólnym mianownikiem ułamków może być iloczyn ich mianowników. Wówczas pierwszy ułamek rozszerzamy przez mianownik drugiego ułamka, a drugi ułamek rozszerzamy przez mianownik pierwszego ułamka. Ten sposób zawsze wyznacza wspólny mianownik, ale często nie jest on najmniejszy, co w konsekwencji może przysparzać trudności w dalszych rachunkach. Z tego sposobu warto korzystać, jeśli wartości mianowników są względnie pierwsze, czyli nie mają wspólnego dzielnika większego niż $1$. Sprawdźmy tę metodę dla ułamków $\frac{5}{12}$ i $\frac{4}{9}$. Wspólnym mianownikiem będzie tym razem $ 12 \cdot 9 = 108$. Rozszerzamy ułamki, tak jak to opisane jest wyżej. $\frac{5}{12} = \frac{5\cdot 9}{12 \cdot 9} = \frac{45}{108}$ $\frac{4}{9} = \frac{4\cdot 12}{9 \cdot 12} = \frac{48}{108}$ Otrzymaliśmy ułamki $\frac{45}{108}$, $\frac{48}{108}$, które są równoważne ułamkom $\frac{5}{12}$ i $\frac{4}{9}$, ale które nie są przedstawione w najprostszej postaci.
Tłumaczenia w kontekście hasła "do jednego mianownika" z polskiego na angielski od Reverso Context: Jak możemy sprowadzać wszystkie produkty do jednego mianownika.
Ułamki sprowadzamy do wspólnego mianownika odpowiednio je rozszerzając. Spójrzmy na poniższe przykłady. Ułamki \(\frac{1}{2}\) oraz \(\frac{1}{3}\) rozszerz w taki sposób, aby doprowadzić je do wspólnego mianownika. Ułamek \(\frac{1}{2}\) rozszerzamy przez mianownik drugiego ułamka: \[\frac{1}{2}=\frac{1\cdot 3}{2\cdot 3}=\frac{3}{6}\] Ułamek \(\frac{1}{3}\)rozszerzamy przez mianownik pierwszego ułamka: \[\frac{1}{3}=\frac{1\cdot 2}{3\cdot 2}=\frac{2}{6}\] W ten sposób oba ułamki rozszerzyliśmy na ułamki o tym samym mianowniku równym \(6\). Ułamki \(\frac{2}{5}\) oraz \(\frac{3}{7}\) rozszerz w taki sposób, aby doprowadzić je do wspólnego mianownika. Ułamek \(\frac{2}{5}\) rozszerzamy przez mianownik drugiego ułamka: \[\frac{2}{5}=\frac{2\cdot 7}{5\cdot 7}=\frac{14}{35}\] Ułamek \(\frac{3}{7}\)rozszerzamy przez mianownik pierwszego ułamka: \[\frac{3}{7}=\frac{3\cdot 5}{7\cdot 5}=\frac{15}{35}\] Oba ułamki doprowadziliśmy do wspólnego mianownika równego \(35\). Uwaga! Dowolne dwa ułamki możemy sprowadzić do wspólnego mianownika na wiele różnych sposobów! Spójrzmy na poniższy przykład. Ułamki \(\frac{1}{6}\) oraz \(\frac{3}{4}\) sprowadź do wspólnego mianownika. Ułamek \(\frac{1}{6}\) rozszerzamy przez mianownik drugiego ułamka: \[\frac{1}{6}=\frac{1\cdot 4}{6\cdot 4}=\frac{4}{24}\] Ułamek \(\frac{3}{4}\)rozszerzamy przez mianownik pierwszego ułamka: \[\frac{3}{4}=\frac{3\cdot 6}{4\cdot 6}=\frac{18}{24}\] Oba ułamki doprowadziliśmy do wspólnego mianownika równego \(24\). W tym przypadku można jednak uzyskać mniejszy wspólny mianownik, stosując następujące rozszerzenia: \[\frac{1}{6}=\frac{1\cdot 2}{6\cdot 2}=\frac{2}{12}\] oraz \[\frac{3}{4}=\frac{3\cdot 3}{4\cdot 3}=\frac{9}{12}\] Tym razem oba ułamki doprowadziliśmy do mianownika równego \(12\). Generalnie opłaca się doprowadzać ułamki do jak najmniejszego mianownika, ponieważ na małych liczbach łatwiej wykonuje się rachunki. Uwaga! Żeby znaleźć najmniejszy wspólny mianownik dla dwóch ułamków, to wystarczy obliczyć NWW ich mianowników. Porównaj podane ułamki - sprowadz je do wspolnego mianownika,a następnie wpisz znak < lub > . 2011-11-11 12:51:58; Podane ułamki sprowadź do najmniejszego wspólnego mianownika. 2011-10-05 21:01:41; Sprowadź podane ułamki do wspólnego mianownika.Zaproponuj jak najmniejszy mianownik. 2016-12-11 18:07:13; Sprowadź ułamki do wspólnego
mianownik 1. Sprowadzić coś do wspólnego mianownika «potraktować jakieś sprawy, zjawiska jednakowo, nie różnicując ich»: Jak sprowadzić do wspólnego mianownika jakościowo odmienne rodzaje pracy? MP 6-8/1997. Na jakim tle wynikają konflikty w zakładach pracy? Kiedy autorka cytowanego sondażu spróbowała przyczyny konfliktów sprowadzić do wspólnego mianownika, okazało się, że najwięcej badanych upatruje je w sferze błędów organizacji i kierowania. Persp 14/1980. 2. Wspólny mianownik «podobieństwo jakichś rzeczy, problemów, spraw»: Porównuje się często stosunki panujące w wojsku do stosunków panujących w więzieniu. Osobiście nie byłem w więzieniu, ale myślę, że są to dwa oddzielne światy, które mają tylko jeden wspólny mianownik – w obu tych instytucjach nagminnie łamane są prawa człowieka. M. Ciesielski, Wojsko. Wspólnym mianownikiem tych nowel jest fakt, że dotyczą islamu – „rodzimej” religii samego autora. Kultura P 500/1989. Słownik frazeologiczny . 2013. Look at other dictionaries: mianownik — {{/stl 13}}{{stl 8}}rz. mnż IIa, D. a {{/stl 8}}{{stl 20}} {{/stl 20}}{{stl 12}}1. {{/stl 12}}{{stl 8}}jęz. {{/stl 8}}{{stl 7}} przypadek deklinacji polskiej, odpowiadający na pytanie {{/stl 7}}{{stl 8}}kto? co? {{/stl 8}}{{stl 7}}, pełniący w… … Langenscheidt Polski wyjaśnień mianownik — m III, D. a, N. mianownikkiem; lm M. i 1. «pierwszy przypadek w deklinacji, występujący w zdaniu w funkcji podmiotu lub orzecznika (odpowiadający na pytanie: kto? co?); forma wyrazowa tego przypadka; nominatiwus» Rzeczownik użyty w mianowniku. 2 … Słownik języka polskiego wspólny — 1. Mieć z kimś, z czymś coś wspólnego a) «być podobnym do kogoś, do czegoś, odznaczać się jakimiś cechami, które upodabniają, zbliżają, łączą»: Suita op. 25 w swej neobarokowej pastiszowości dowodzi, iż Schönberg miał też coś wspólnego ze… … Słownik frazeologiczny ułamek — m III, D. ułamekmka, N. ułamekmkiem; lm M. ułamekmki 1. mat. «iloraz dwóch liczb naturalnych zapisywanych jedna (licznik) nad drugą (mianownik), oddzielanych poziomą kreską lub zapisywanych bez kreski, oddzielanych przecinkiem od liczb… … Słownik języka polskiego odwrotność — ż V, DCMs. odwrotnośćści, blm rzecz. od odwrotny (zwykle w zn. 1) Odwrotność jakiegoś twierdzenia. ∆ mat. Odwrotność liczby «liczba, której iloczyn przez daną liczbę (nierówną zeru) równa się jedności» ∆ Odwrotność ułamka «w stosunku do liczby… … Słownik języka polskiego synkretyzm — m IV, D. u, Ms. synkretyzmzmie, blm 1. «łączenie w jedną całość różnych, często sprzecznych poglądów filozoficznych, religijnych, społecznych; zespolenie się, skrzyżowanie się jakichkolwiek elementów» Synkretyzm filozoficzny, religijny.… … Słownik języka polskiego Polnische Sprache — Polnisch (język polski) Gesprochen in Polen, als Minderheitensprache: Litauen, Tschechien, Ukraine, Weißrussland, Deutschland, Großbritannien, Frankreich, USA, Kanada, Brasilien, Argentinien, Australien, Irland, Israel … Deutsch Wikipedia Польский язык — Самоназвание: język polski, polszczyzna Страны: Польша, США … Википедия Polnische Grammatik — Dieser Artikel beschreibt die Grammatik der polnischen Sprache unter Einbeziehung einiger sprachgeschichtlicher Anmerkungen und dialektaler Besonderheiten. Das Polnische als westslawische Sprache hat in der Deklination wie die meisten anderen… … Deutsch Wikipedia sprowadzić — 1. Sprowadzić kogoś na złą drogę, na bezdroża «nakłonić kogoś, często własnym przykładem, do niewłaściwego postępowania»: Wacław B. ze zdziwienia i niedowierzenia, aż opadł na fotel. – Więc to ja miałem ją sprowadzić na złą drogę, wykorzystać… … Słownik frazeologiczny
Jak sprowadzić ułamki zwykłe do wspólnego mianownika? Wiem jak sprowadzić, gdy są dwa przykłady ułamków, ale gdy są cztery tak jak w załączniku to jak je sprowadzić do wspólnego mianownika? Jak rozłożę je na czynniki pierwszę i obliczę NWD to wychodzi wspólny mianownik, ale bardzo duży. Czy nie ma łatwiejszego sposobu?
No niestety ani jedno ani drugie nie jest zgodne z moimi wynikami. Oto treść całego zadania: Wykaż, że dla dowolnych liczb naturalnych n, k gdzie k – Wydawało mi się, że Hubert Hurkacz po prostu nie dowierza, iż jego przeciwnik może grać aż tak dobrze. Nasze młode gwiazdy wciąż zbierają doświadczenie – ocenia Klaudia Jans-Ignacik, olimpijka z Pekinu, Londynu i Rio oraz finalistka French Open w mikście. Ułamek zwykły składa się z licznika (u góry) i mianownika (u dołu) oddzielonych tzw. kreską ułamkową. Odejmowanie ułamków zwykłych o takich samych mianownikach polega na odjęciu liczników, mianownik zostaje przepisany. Tego rodzaju działania uczniowie uczą się wykonywać w 4 klasie szkoły podstawowej. Nieco bardziej skomplikowane może okazać się dla najmłodszych odejmowanie ułamków o różnych mianownikach lub ułamków dziesiętnych. W tym ostatnim przypadku warto zastosować metodę odejmowania „pod kreską”. Odejmowanie ułamków zwykłych o takich samych mianownikach Odejmowanie ułamków zwykłych nie jest skomplikowane. Zasada mówi, że należy sprowadzić je do wspólnego mianownika. Jak wygląda odejmowanie ułamków, które mają taką samą podstawę? W takiej sytuacji wystarczy odjąć liczniki: Wynik należy jeszcze skrócić: Foto: Onet W ten sposób wykonuje się odejmowanie ułamków o tych samych mianownikach. Odejmowanie ułamków zwykłych o różnych mianownikach Jak należy wykonywać odejmowanie ułamków o różnych mianownikach? Aby uzyskać wynik równania, trzeba sprowadzić ułamki do wspólnego mianownika i dopiero zastosować metodę odejmowania liczników. Łatwo zrozumieć zasadę, patrząc na poniższy przykład: Foto: Onet Pierwszym krokiem jest znalezienie wspólnej podstawy (8*5 = 40): Foto: Onet Zarówno licznik, jak i mianownik należy pomnożyć przez 5. W ten sam sposób postępujemy z drugim ułamkiem, tyle że mnożymy przez 8: Foto: Onet Teraz możliwe jest wykonanie działania: Foto: Onet Odejmowanie ułamków z całościami Kolejnym etapem nauki równań z wykorzystaniem ułamków zwykłych jest odejmowanie ułamków z całościami. W takiej sytuacji należy zamienić liczbę mieszaną na ułamek niewłaściwy (to ułamek, który w liczniku ma większą liczbę niż w mianowniku), jak w poniższym przykładzie: Foto: Onet Jak więc wygląda odejmowanie ułamków z całościami? Po zamianie na ułamek niewłaściwy, w razie konieczności należy sprowadzić ułamki do wspólnego mianownika i wykonać równanie — jak w poniższym przykładzie: Foto: Onet Odejmowanie ułamków dziesiętnych Odejmowanie ułamków dziesiętnych można wykonywać pod kreską. Zasada, o której trzeba pamiętać, to podpisywanie przecinka pod przecinkiem i ewentualne dopisanie zer (jeśli liczba cyfr po przecinku jest inna). Odejmowanie ułamków zaczynamy od poprawnego zapisu: 9,75 - 6,59 = 3,16, ponieważ: Foto: Onet lub jak w przykładzie: 32,7 - 10,542 = 22,158, ponieważ: Foto: Onet Odejmowanie ułamków dziesiętnych i zwykłych można opanować dość szybko, wystarczy zapamiętać kilka zasad wyszczególnionych powyżej. Metodą na utrwalenie tej umiejętności jest regularne wykonywanie ćwiczeń, rozwiązywanie zadań matematycznych. Pomóc mogą tu przykłady zamieszczone w internecie. Warto wchodzić na strony, na których dziecko może od razu przećwiczyć materiał do opanowania. Dostępne są również karty pracy dotyczące odejmowania ułamków. Odejmowanie ułamków — podsumowanie wiadomości Zasady, jakie trzeba poznać, by odejmować ułamki, to przede wszystkim konieczność sprowadzania do wspólnego mianownika ułamków zwykłych oraz odpowiedni zapis pod kreską ułamków dziesiętnych. Oczywiście w niektórych przypadkach możliwe jest odejmowanie w pamięci, wtedy można zrezygnować z liczenia pod kreską. Odejmowanie ułamków nie jest trudną sztuką, jednak warto pomóc najmłodszym w jej opanowaniu. Umiejętność ta przyda się również w kolejnych klasach, przy rozwiązywaniu znacznie trudniejszych zadań matematycznych. Rozszerzanie ułamków polega na mnożeniu licznika i mianownika przez tą samą liczbę (inną od zera). Jeden ułamek można rozszerzyć do wielu innych postaci ułamków, np.: Rozszerzenie ułamka nie powoduje zmiany jego wartości. Najczęściej zmienia się ułamki, aby sprowadzić do wspólnego mianownika. 8. Naszym celem będzie sprowadzenie ułamków do wspólnego mianownika. Polega ono na rozszerzeniu ułamków (mnożeniu licznika i mianownika przez tą samą liczbę) tak, aby w mianowniku uzyskać wspólną liczbę dla wszystkich ułamków. To działanie jest niezbędne np. przy dodawaniu i odejmowaniu ułamków. Jak to zrobić? Weźmy dwa ułamki $\frac{2}{4}$ i $\frac{1}{3}$. Żeby znaleźć wspólny mianownik, to znajdujemy jego najmniejszą wspólną wielokrotność (NWW), to znaczy: Wypisujemy po kolei wielokrotności danych liczb. Dla 4 i 3 mamy: 4 $\rightarrow$ 4,8,12,16,20,24,… 3 $\rightarrow$ 3,6,9,12,15,18,… Wypisujemy te wielokrotności aż do momentu, jak pierwszy raz znajdziemy wielokrotność liczb 4 i 3. Jest to liczba 12. Zatem NWW(4,3) $=$ 12, czyli liczba 12 jest ich wspólnym mianownikiem. Rozszerzamy więc nasze ułamki tak, aby w mianowniku pojawiła się 12, to znaczy: $$\frac{2}{4} = \frac{2}{4} \cdot \color{blue}{\frac{3}{3}} \color{black}{= \frac{2\cdot3}{4\cdot3}=\frac{6}{12}}$$ $$\frac{1}{3} = \frac{1}{3} \cdot \color{blue}{\frac{4}{4}}\color{black}{ = \frac{1\cdot4}{3\cdot4}=\frac{4}{12}}$$Po tym procesie uzyskaliśmy wspólny mianownik. Jest to liczba 12. Dodawanie ułamków zwykłych Żeby wyjaśnić idee dodawania ułamków, to spójrz na powyższe przykłady. Przykład 1. Oblicz $\frac{1}{3} + \frac{1}{4}$. Najpierw zaczynamy od sprowadzenia do wspólnego mianownika. Z poprzedniej części wiemy, że wspólnym mianownikiem 3 i 4 jest liczba 12. Zatem: $$\frac{1}{3} + \frac{1}{4} = \frac{1 \cdot 4}{3 \cdot 4} + \frac{1 \cdot 3}{1 \cdot 4}= \frac{4}{12} + \frac{3}{12} = \frac{7}{12}$$ Przykład 2. Oblicz $1\frac{1}{5} + \frac{3}{5}$. Najpierw liczbę $1\frac{1}{5}$ zamieniamy na ułamek niewłaściwy, tj.: $$1\frac{1}{5} = \frac{1 \cdot 5 + 1}{5} = \frac{5+1}{5} = \frac{6}{5}$$Teraz możemy wykonać działanie:$$\frac{6}{5} + \frac{3}{5} = \frac{9}{5}$$ Przykład 3. Oblicz $2\frac{1}{4} + 2\frac{1}{6}$. Na początku zamieniamy liczby na ułamki niewłaściwe, czyli:$$2\frac{1}{4} = \frac{2 \cdot 4 + 1}{4} = \frac{8+1}{4} = \frac{9}{4}$$ $$2\frac{1}{6} = \frac{2 \cdot 6 + 1}{6} = \frac{12+1}{6} = \frac{13}{6}$$Znajdujemy NWW(4,6), tzn. wypisujemy wielokrotności liczb 4 i 6: 4 $\rightarrow$ 4,8,12,16,20,24,… 6 $\rightarrow$ 6,12,18,24,30,… Zatem NWW(4,6) $=$ 12. Wobec tego: $$\frac{9}{4} + \frac{13}{6} = \frac{9 \cdot 3}{4 \cdot 3} + \frac{13 \cdot 2}{3 \cdot 4} = \frac{27}{12} + \frac{26}{12} = \frac{27+26}{12} = \frac{53}{12} = 4\frac{5}{12}$$ Odejmowanie ułamków zwykłych Schemat odejmowania ułamków jest taki sam jak przy dodawaniu ułamków zwykłych. Przykład 4. Oblicz $\frac{3}{4} – \frac{1}{4}$. $$\frac{3}{4} – \frac{1}{4} = \frac{3-1}{4} = \frac{2}{4}$$ Przykład 5. Oblicz $\frac{1}{3} – \frac{1}{7}$. Analogicznie jak w poprzednich przykładach, na początku sprowadzamy ułamki do wspólnego mianownika, licząc NWW(3,7), które jest równe 21. Zatem: $$\frac{1}{3} – \frac{1}{7} = \frac{1 \cdot 7}{3 \cdot 7} – \frac{1 \cdot 3}{7 \cdot 3} = \frac{7}{21} – \frac{3}{21} = \frac{4}{21}$$ Przykład 6. Oblicz $2\frac{1}{3} – 1\frac{1}{9}$. Analogicznie jak w poprzednich przykładach, najpierw zamieniamy powyższe ułamki na ułamki niewłaściwe, tj.: $$2\frac{1}{3} = \frac{2 \cdot 3 + 1}{3} = \frac{6+1}{3} = \frac{7}{3}$$ $$1\frac{1}{9} = \frac{1 \cdot 9 + 1}{3} = \frac{9+1}{9} = \frac{10}{9}$$Następnie sprowadzamy do wspólnego mianownika, licząc NWW(3,9). Tym razem NWW(3,9) $=$ 9. Wobec tego: $$2\frac{1}{3} – 1\frac{1}{9} = \frac{7}{3} – \frac{10}{9} = \frac{7 \cdot 3}{3 \cdot 3} – \frac{10}{9} = \frac{21}{9} – \frac{10}{9} = \frac{21 – 10}{9} = \frac{11}{9}$$ Mnożenie ułamków zwykłych Żeby łatwiej wytłumaczyć zasadę mnożenia ułamków zwykłych, to spójrz na ten przykład: Przykład 7. Oblicz $2 \cdot \frac{2}{5}$. Korzystając z własności ułamka: $$\frac{a \cdot b}{c \cdot d} = \frac{a}{b} \cdot \frac{c}{d},\;\;\;\;gdzie: c, d \neq 0$$mamy:$$2 \cdot \frac{2}{5} = \frac{2}{1} \cdot \frac{2}{5} = \frac{2 \cdot 2}{1 \cdot 5} = \frac{4}{5}$$ Wystarczy tylko pomnożyć liczniki i mianowniki obu ułamków. Nie trzeba ich nawet sprowadzać do wspólnego mianownika. Przykład 8. Oblicz $2\frac{3}{4} \cdot 3\frac{2}{5}$. Analogiczne jak w przykładzie 7, mamy: $$2\frac{3}{4} \cdot 3\frac{2}{5} = \frac{2 \cdot 4 + 3}{4} \cdot \frac{3 \cdot 5 + 2}{5} = \frac{11}{4} \cdot \frac{17}{5} = \frac{11 \cdot 17}{4 \cdot 5} = \frac{187}{20} = 9\frac{7}{20}$$ Dzielenie ułamków zwykłych Żeby podzielić dwa ułamki zwykłe, to pierwszy ułamek mnożymy przez odwrotność drugiego ułamka. Przykład 9. Oblicz $\frac{1}{2} \div \frac{2}{3}$. Pierwszy ułamek pozostaje bez zmian, drugi ułamek „odwracamy”, to znaczy: zamieniamy miejscami licznik z mianownikiem, czyli: Teraz możemy obie liczby pomnożyć. Zatem:$$\frac{1}{2} \div \frac{2}{3} = \frac{1}{2} \cdot \frac{3}{2} = \frac{1 \cdot 3}{2 \cdot 2} = \frac{3}{4}$$ Przykład 10. Oblicz $3 \div \frac{1}{2}$. Podobnie jak w poprzednim przykładzie, liczbę 3 zostawiamy. Odwrotnością ułamka $\frac{1}{2}$ jest liczba $\frac{2}{1}$ czyli 2. Zatem: $$3 \div \frac{1}{2} = 3 \cdot \frac{2}{1} = \frac{3}{1} \cdot \frac{2}{1} = \frac{3 \cdot 2}{1 \cdot 1} = \frac{6}{1} = 6$$ Przykład 11. Oblicz $2\frac{2}{3} \div 3\frac{1}{4}$. Wcześniej przy dzieleniu ułamków zamienialiśmy ułamki mieszane na ułamki niewłaściwe, tzn.:$$2\frac{2}{3} = \frac{2 \cdot 3 + 2}{3} = \frac{6+2}{3} = \frac{8}{3}$$ $$3\frac{1}{4} = \frac{3 \cdot 4 + 1}{4} = \frac{12+1}{4} = \frac{13}{4}$$Liczbę $\frac{8}{3}$ zostawiamy bez zmian, natomiast liczba $\frac{13}{4}$ jest w postaci $\frac{4}{13}$. Zatem: $$2\frac{2}{3} \div 3\frac{1}{4} = \frac{8}{3} \div \frac{13}{4} = \frac{8}{3} \cdot \frac{4}{13} = \frac{8 \cdot 4}{3 \cdot 13} = \frac{32}{39}$$
Ułamki mają różne liczniki i mianowniki. W związku z tym aby móc je ze sobą porównać należy sprowadzić do wspólnego mianownika (lub licznika). W tym przypadku możemy sprowadzić ułamki do wspólnego mianownika, którym jest liczba 12. Ułamek po lewej stronie mnożymy przez 3 a ułamek po prawej stronie mnożymy przez 2.
Sprowadź do wspólnego mianownika poniższe ułamki: a) \(\dfrac{3}{5}\) oraz \(1\dfrac{2}{7}\) b) \(3\dfrac{5}{9}\) oraz \(7\dfrac{5}{6}\) c) \(2\dfrac{2}{3}\) oraz \(4\dfrac{4}{15}\) d) \(5\dfrac{6}{13}\) oraz \(9\dfrac{1}{2}\) e) \(11\dfrac{5}{12}\) oraz \(\dfrac{3}{5}\) Rozwiązanie Aby sprowadzić ułamek z częścią całkowitą do wspólnego mianownika, postępujemy tak, jakby tej liczby całkowitej nie było, po prostu przepisujemy ją, a ułamek rozszerzamy: a) \(\dfrac{3}{5}\) oraz \(1\dfrac{2}{7}\)Wspólnym mianownikiem będzie \(5\cdot 7=35\): \( \dfrac{3}{5}_{\: / \: \cdot 7}=\dfrac{3\cdot 7}{5\cdot 7}=\dfrac{21}{35}\) \(1\dfrac{2}{7}_{\: / \: \cdot 5}=1\dfrac{2\cdot 5}{7\cdot 5}=1\dfrac{10}{35}\) b) \(3\dfrac{5}{9}\) oraz \(7\dfrac{5}{6}\)Pierwszy mianownik to \(9=3\cdot 3\), drugi to \(6=3\cdot 2\), oznacza to, że wspólnym mianownikiem może być \(18\), czyli iloczyn niepowtarzających się liczb \(3\cdot 3\cdot 2\). \( 3\dfrac{5}{9}_{\: / \: \cdot 2}=3\dfrac{5\cdot 2}{9\cdot 2}=3\dfrac{10}{18}\) \( 7\dfrac{5}{6}_{\: / \: \cdot 3}=7\dfrac{5\cdot 3}{6\cdot 3}=7\dfrac{15}{18}\) c) \(2\dfrac{2}{3}\) oraz \(4\dfrac{4}{15}\)Wspólnym mianownikiem będzie \(15\), więc tylko pierwszy ułamek rozszerzamy: \( 2\dfrac{2}{3}_{\: / \: \cdot 5}=2\dfrac{2\cdot 5}{3\cdot 5}=2\dfrac{10}{15}\) \(4\dfrac{4}{15}\) d) \(5\dfrac{6}{13}\) oraz \(9\dfrac{1}{2}\) Wspólnym mianownikiem będzie \(13\cdot 2 = 26\) \(5\dfrac{6}{13}_{\: / \: \cdot 2}=5\dfrac{6\cdot 2}{13\cdot 2}=5\dfrac{12}{26}\) \(9\dfrac{1}{2}_{\: / \: \cdot 13}=9\dfrac{1\cdot 13}{2\cdot 13}=9\dfrac{13}{26}\) e) \(11\dfrac{5}{12}\) oraz \(\dfrac{3}{5}\)Wspólnym mianownikiem podanych wyrażeń będzie \(12\cdot 5=60\): \(11\dfrac{5}{12}_{\: / \: \cdot 5}=11\dfrac{5\cdot 5}{12\cdot 5}=11\dfrac{25}{60}\) \(\dfrac{3}{5}_{\: / \: \cdot 12}=\dfrac{3\cdot 12}{5\cdot 12}=\dfrac{36}{60}\)Zadanie 1Zadanie 3 .
  • sqhu1089eg.pages.dev/331
  • sqhu1089eg.pages.dev/133
  • sqhu1089eg.pages.dev/653
  • sqhu1089eg.pages.dev/250
  • sqhu1089eg.pages.dev/203
  • sqhu1089eg.pages.dev/904
  • sqhu1089eg.pages.dev/854
  • sqhu1089eg.pages.dev/344
  • sqhu1089eg.pages.dev/545
  • sqhu1089eg.pages.dev/682
  • sqhu1089eg.pages.dev/380
  • sqhu1089eg.pages.dev/966
  • sqhu1089eg.pages.dev/150
  • sqhu1089eg.pages.dev/462
  • sqhu1089eg.pages.dev/905
  • jak sprowadzić do wspólnego mianownika